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Abstract
We derive expressions for three-body phase space that are explicitly
symmetrical in the masses of the three particles. We study geometrical
properties of the variables involved in elliptic integrals and demonstrate that it
is convenient to use the Jacobian zeta function to express the results in four and
six dimensions.

PACS numbers: 11.80.Cr, 11.10.Kk, 12.30.Gp

1. Introduction

The subject of three-body (and, in general, N-body) relativistic phase space is as old as the
hills and one might well think that all that there is to know is already known. In numerical and
experimental terms this is indeed true: for a long time Dalitz plots [1, 2] have been routinely
used in picturing data and they prove extremely helpful for picking out resonant intermediate
states of particular spin by their preferential population of the plots. In the absence of any
amplitude modulation by resonances or otherwise, the plots are at their blandest as they just
represent three-body phase space.

In any multibody production such as A + B → 1 + 2 + · · · + N , the probability of the
process is largely governed by the total momentum p = pA + pB , the masses of the final
particles m1,m2, . . . , mN relative to

√
p2 and an overall coupling constant. Surely there is

also the dynamics of production which modulates the coupling magnitude by intermediate
state contributions, but the overall rate is mainly influenced by the unmodulated phase-space
integral as written below. The case of N = 3 phase-space integrals and the manifest symmetry
of the result upon the three masses of the product particles is the subject of this paper.

4 Present address: Schlumberger, SPC, 155 Industrial Dr, Sugar Land, TX 77478, USA.
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One of the first comprehensive references on this subject is the paper by Almgren [3]. In
his normalization, the integral over the N-particle phase space is defined as

I
(D)
N (p,m1, . . . , mN) =

∫
· · ·

∫ {
N∏

i=1

dDpiδ
(
p2

i − m2
i

)
θ
(
p0

i

)}
δ

(
N∑

i=1

pi − p

)
(1.1)

where p is the total momentum. From now on, we will frequently use the notation p =
√

p2,
since usually it is easy to distinguish it from the cases when the four-dimensional vector p is
meant. As a rule, we will also omit the arguments of I

(D)
N . In four dimensions (D = 4), we

will denote IN ≡ I
(4)
N (this is the original Almgren’s notation). More details about integrals in

other dimensions can be found in [4] and in the rest of this paper. It is worth mentioning that
I

(D)
N is easy to work out for odd values of D, whereas considering even values of D brings in

elliptic functions and is more difficult.
For kinematical reasons, it is clear that the results for the integrals (1.1) have no

physical meaning if the absolute value of the momentum p is less than the sum of the
masses. Therefore, in what follows we will imply that all results for I

(D)
N are accompanied

by θ{p2 − (m1 + · · · + mN)2}, without writing this theta function explicitly. In [5, 3], integral
recurrence relations for IN (at D = 4) were discussed. For an arbitrary dimension D, the
generating relation can be presented as

I
(D)
N (p,m1, . . . , mN) =

∫
dsI

(D)
R+1(p,

√
s,mN−R+1, . . . , mN)I

(D)
N−R(

√
s,m1, . . . , mN−R).

(1.2)

Taking into account the theta functions associated with I
(D)
N−R and I

(D)
R+1, one can see that

the actual limits of the integration variable s in equation (1.2) extend from
(∑N−R

i=1 mi

)2
to(

p − ∑N
i=N−R+1 mi

)2
. Once we fix the subsets of masses in the arguments of the integrals on

the r.h.s. of (1.2), the explicit symmetry gets lost. It is clear, however, that equation (1.2) still
contains that symmetry, since one can split the masses m1, . . . , mN into these two subsets in
any possible way. Another type of integral recurrence relations for I

(D)
N , with respect to the

value of D, was considered in [6].
The simplest example is the two-particle phase space, N = 2. In this case, the phase-space

integral (1.1) in four dimensions can be easily evaluated as

I2 = π

2p2

√
λ
(
p2,m2

1,m
2
2

)
(1.3)

where

λ(x, y, z) ≡ x2 + y2 + z2 − 2xy − 2yz − 2zx (1.4)

is nothing but the well-known Källen function [7].
Using equations (1.2) and (1.3) (for the case D = 4, R = 1), one can obtain the following

integral representation [3, 8] for the three-particle (N = 3) phase space:

I3 = π2

4p2

∫ s3

s2

ds

s

√
(s − s1)(s − s2)(s3 − s)(s4 − s) (1.5)

with

s1 = (m1 − m2)
2 s2 = (m1 + m2)

2 s3 = (p − m3)
2 s4 = (p + m3)

2 (1.6)

so that s1 � s2 � s3 � s4. The result of the calculation of the integral (1.5) can be expressed
in terms of the elliptic integrals [3, 8] (for convenience, we collect the definitions and relevant
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properties of elliptic integrals in the appendix),

I3 = π2

4p2
√

Q+

{
1

2
Q+

(
m2

1 + m2
2 + m2

3 + p2
)
E(k)

+ 4m1m2[(p − m3)
2 − (m1 − m2)

2][(p + m3)
2 − m3p + m1m2]K(k)

+ 8m1m2
[(

m2
1 + m2

2

)(
p2 + m2

3

) − 2m2
1m

2
2 − 2m2

3p
2
]
�
(
α2

1, k
)

− 8m1m2
(
p2 − m2

3

)2
�
(
α2

2, k
)}

(1.7)

where we use the following notations:

Q+ ≡ (p + m1 + m2 + m3)(p + m1 − m2 − m3)(p − m1 + m2 − m3)(p − m1 − m2 + m3)

Q− ≡ (p − m1 − m2 − m3)(p − m1 + m2 + m3)(p + m1 − m2 + m3)(p + m1 + m2 − m3)

(1.8)

k ≡
√

Q−
Q+

α2
1 = (p − m3)

2 − (m1 + m2)
2

(p − m3)2 − (m1 − m2)2
α2

2 = (m1 − m2)
2

(m1 + m2)2
α2

1 . (1.9)

We note that in [8] the notation q±± ≡ (p ± m3)
2 − (m1 ± m2)

2 was used. In particular, we
have Q+ = q++q−−,Q− = q+−q−+, k

2 = q+−q−+/(q++q−−), α2
1 = q−+/q−−. Note that Q±

differ by the sign of p only.
It is clear from definition (1.1) that I3 should be a symmetrical function of the three masses

m1,m2,m3. The representation (1.7) in terms of elliptic integrals is however not explicitly
symmetrical in the masses, although it must be implicitly so. One may, of course, generate a
symmetrical form by averaging the unsymmetrical-looking expressions over the three possible
permutations of mi , but this would be ‘cheating’ since each of them should be symmetrical by
itself, although this is hardly transparent.

Note that the quantities Q+ and Q− (and, therefore, the argument k) are totally symmetric
in m1,m2,m3. (In fact, they are symmetric in all four arguments p,m1,m2,m3.) Therefore,
the term containing E(k) in equation (1.7) is also symmetric. The function K(k) itself is also
symmetric, but its coefficient is not symmetric. We also note that the product of Q+ and Q−
produces the quantity

D123 ≡ Q+Q− = [p2 − (m1 + m2 + m3)
2][p2 − (−m1 + m2 + m3)

2]

× [p2 − (m1 − m2 + m3)
2][p2 − (m1 + m2 − m3)

2] (1.10)

that occurs in recurrence relations for the sunset diagram (see, e.g., in [9, 10]). It should
be noted that the imaginary part of the sunset diagram is proportional to the three-particle
phase-space integral. For instance, in the notation of [8], Im(T123) = −4π−1I3. We also note
that ρD

N considered in [4, 6] are related to I
(D)
N as ρD

N = (2π)N+D−NDI
(D)
N .

For equal masses, m1 = m2 = m3 ≡ m, equation (1.7) yields

π2

4p2

√
(p − m)(p + 3m)

{
1

2
(p − m)(p2 + 3m2)E(keq) − 4m2pK(keq)

}
(1.11)

with

keq =
√

(p + m)3(p − 3m)

(p − m)3(p + 3m)
. (1.12)

Some other special cases of equation (1.7) are described in [8, 11].
This paper is devoted to a new way of exhibiting the results in an explicitly symmetrical

manner. To do this, we will employ another integral representation for I3, in terms of
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Mandelstam variables s, t, u [12] and the Kibble cubic �(s, t, u) [13]. In particular, we will
show that it is convenient to present the result (1.7) in terms of Jacobi Z function whose
definition is given in the appendix.

2. Phase-space integrals

As an illustration, let us demonstrate how the connection with the Dalitz figure can be derived
directly from definition (1.1). The D-dimensional vector p can be presented as (p0, p), where p
is the (D −1)-dimensional Euclidean vector of space components. Without loss of generality,
we can work in the centre-of-mass frame, p = (p0, 0). Using the integral representation

δ

(
N∑

i=1

pi − p

)
= 1

(2π)D

∫
dDx exp

{
i

N∑
i=1

(pix) − i(px)

}
(2.1)

with (px) = p0x0, we get

I
(D)
N = 1

(2π)D

∫
dDx e−ip0x0

{
N∏

i=1

∫
dDpiδ

(
p2

i − m2
i

)
θ
(
p0

i

)
ei(pix)

}
. (2.2)

(Similar method was used in [14].) Integrating over (D − 1)-dimensional angles of pi we get∫
dDpiδ

(
p2

i − m2
i

)
θ
(
p0

i

)
ei(pix) = (2π)(D−1)/2

2ξ (D−3)/2

∫ ∞

0

ρ
(D−1)/2
i dρi√
ρ2

i + m2
i

J(D−3)/2(ρiξ) eix0
√

ρ2
i +m2

i

(2.3)

with ρi ≡ |pi | and ξ ≡ |x|. In the four-dimensional case the Bessel function reduces
to an elementary function, J1/2(ρiξ) = [2/(πρiξ)]1/2 sin(ρiξ). We note an analogy with
the calculation of Feynman integrals in the coordinate space [15, 22], when each massive
propagator yields a (modified) Bessel function.

Let us consider, for example, the two-particle phase space. Then, the integration over ξ

gives us ∫ ∞

0
ξdξ Jν(ρ1ξ)Jν(ρ2ξ) = 2δ

(
ρ2

1 − ρ2
2

)
with ν = (D − 3)/2, so that we can put ρ1 = ρ2 ≡ ρ, whereas the integration over x0

yields another delta function, δ
(
p −

√
ρ2 + m2

1 −
√

ρ2 + m2
2

)
in the centre-of-mass frame. The

resulting integral

I
(D)
2 = π(D−1)/2

2�
(

D−1
2

) ∫ ∞

0

ρD−2dρ√
ρ2 + m2

1

√
ρ2 + m2

2

δ

(
p −

√
ρ2 + m2

1 −
√

ρ2 + m2
2

)
(2.4)

can be easily evaluated, yielding (see, e.g., in [6])

I
(D)
2 = π(D−1)/2

(2p)D−2�
(

D−1
2

) [λ(p2,m2
1,m

2
2

)](D−3)/2
(2.5)

where λ is defined in equation (1.4). For D = 4, equation (2.5) reduces to the well-known
answer (1.3).

For the three-particle phase-space integral we get

I
(D)
3 = 2(D−7)/2πD−2

�
(

D−1
2

) ∫ ∞

0

dξ

ξ (D−5)/2

∫ ∞

−∞
dx0 e−ip0x0

×
3∏

i=1

∫ ∞

0

ρ
(D−1)/2
i dρi√
ρ2

i + m2
i

J(D−3)/2(ρiξ) eix0
√

ρ2
i +m2

i . (2.6)
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Here we can integrate over ξ , using (see [16])∫ ∞

0

dξ

ξν−1
Jν(ρ1ξ)Jν(ρ2ξ)Jν(ρ3ξ) = 2θ

{−λ
(
ρ2

1 , ρ2
2 , ρ2

3

)}[−λ
(
ρ2

1 , ρ
2
2 , ρ2

3

)]ν−1/2

π1/2�
(
ν + 1

2

)
(8ρ1ρ2ρ3)ν

(2.7)

(with ν = (D − 3)/2), where λ is the Källen function (1.4). In fact, in our case, when all
ρi � 0,

θ
{−λ

(
ρ2

1 , ρ
2
2 , ρ2

3

)} = θ(ρ1 + ρ2 − ρ3)θ(ρ2 + ρ3 − ρ1)θ(ρ3 + ρ1 − ρ2), (2.8)

i.e. it equals 1 when one can compose a triangle with sides ρ1, ρ2, ρ3, and gives 0 otherwise
(cf equation (11) of [17]).

Introducing notation σi =
√

ρ2
i + m2

i and integrating over x0 (getting a δ function) we
arrive at

I
(D)
3 = πD−2

�(D − 2)

∫ ∞

m1

∫ ∞

m2

∫ ∞

m3

dσ1 dσ2 dσ3δ(p − σ1 − σ2 − σ3)

× [−λ
(
σ 2

1 − m2
1, σ

2
2 − m2

2, σ
2
3 − m2

3

)](D−4)/2
θ
{−λ

(
σ 2

1 − m2
1, σ

2
2 − m2

2, σ
2
3 − m2

3

)}
.

(2.9)

In four dimensions the factor [−λ](D−4)/2 disappears and, geometrically, we need to calculate
a closed area on the plane σ1 + σ2 + σ3 = p0 ≡ p, with the boundary of the figure described
by

λ
(
σ 2

1 − m2
1, σ

2
2 − m2

2, σ
2
3 − m2

3

) = 0 σ1 + σ2 + σ3 = p. (2.10)

Furthermore, introducing Mandelstam-type variables

s = p2 + m2
3 − 2pσ3 t = p2 + m2

1 − 2pσ1 u = p2 + m2
2 − 2pσ2 (2.11)

satisfying

s + t + u = m2
1 + m2

2 + m2
3 + p2 ≡ w0 (2.12)

one arrives at another integral representation (the limits of integration are discussed below),

I
(D)
3 = πD−2

4pD−2�(D − 2)

∫ ∫ ∫
ds dt du δ(s + t + u − w0) [�(s, t, u)](D−4)/2 θ {�(s, t, u)}

(2.13)

where

�(s, t, u) = − 1

16p2
λ
{
λ
(
s,m2

3, p
2), λ(t, m2

1, p
2), λ(u,m2

2, p
2)} (2.14)

can also be written in a more familiar Kibble cubic form [13],

�(s, t, u) = stu − s
(
m2

1m
2
2 + p2m2

3

) − t
(
m2

2m
2
3 + p2m2

1

) − u
(
m2

3m
2
1 + p2m2

2

)
+ 2

(
m2

1m
2
2m

2
3 + p2m2

1m
2
2 + p2m2

2m
2
3 + p2m2

3m
2
1

)
(2.15)

provided that the condition (2.12) is satisfied. In particular, in four dimensions we have

I3 = π2

4p2

∫ ∫ ∫
ds dt du δ(s + t + u − w0)θ {�(s, t, u)} . (2.16)

According to definition (2.11) in terms of σi , one can see that the maximal values of
s, t and u (corresponding to the upper limits of integration in equations (2.13) and (2.16))
are smax = (p − m3)

2, tmax = (p − m1)
2 and umax = (p − m2)

2. To define the minimal
values of s, t and u, the familiar Dalitz–Kibble plot given in figure 1 is useful. Due to
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smin

tmin
umin

Os

Ot

Ou

Ps

Pt

Pu

s0[2]

t0[2]

u0[2]

s0[1]

t0[1]

u0[1]

Figure 1. The Dalitz–Kibble integration area.

the condition (2.12), the region of integration is restricted by a triangle, with s � smin =
(m1 + m2)

2, t � tmin = (m2 + m3)
2 and u � umin = (m1 + m3)

2. Moreover, due to the theta
function θ {�(s, t, u)} the region of integration is in fact restricted by the interior of the cubic
curve �(s, t, u) = 0, see figure 1. Within that area, the Mandelstam variables s, t and u take
their minimal values in points Os,Ot and Ou, respectively, whereas their maximal values
correspond to the points Ps, Pt and Pu. (The dashed triangles will be discussed in section 4.)

The function �(s, t, u) has a maximum within the region of integration. For equal
masses, the maximal value �max = 1

27p2(p2 − 9m2)2 occurs at s = t = u = 1
3 (p2 + 3m2).

For the general unequal masses, one needs to solve a fourth-order algebraic equation to find
the position of the maximum.

We note that the representation (2.14) can be extracted from equation (5.39) of [18],
using symmetry properties. Our �(s, t, u) corresponds to −G

(
s, t, p2,m2

2,m
2
1,m

2
3

)
, in the

notations of [18]. The G-function is symmetric with respect to the permutations of three
pairs of arguments, (s, t),

(
p2,m2

2

)
and

(
m2

1,m
2
3

)
. Although the authors presume from their

equation (5.39) that ‘from a practical point of view this identity is not very useful’, we
found that its symmetric form is certainly helpful in understanding the structural properties of
phase-space integrals.

3. Geometrical interpretation

Let us introduce

c12 = s − m2
1 − m2

2

2m1m2
c23 = t − m2

2 − m2
3

2m2m3
c13 = u − m2

1 − m2
3

2m1m3
. (3.1)

Then, the function �(s, t, u) can be presented as a Gram determinant,

�(s, t, u) = 4m2
1m

2
2m

2
3

∣∣∣∣∣∣
1 c12 c13

c12 1 c23

c13 c23 1

∣∣∣∣∣∣ (3.2)

whereas the δ function becomes

δ
(
s + t + u − m2

1 − m2
2 − m2

3 − p2
)

⇒ δ
(
m2

1 + m2
2 + m2

3 + 2m1m2c12 + 2m2m3c23 + 2m1m3c13 − p2
)
. (3.3)
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m1

m2

m3
p

s
u

t

Figure 2. The parallelepiped interpretation.

In this way, we get

I3 = 2π2

p2
m2

1m
2
2m

2
3

∫ ∫ ∫
dc12 dc13 dc23θ



∣∣∣∣∣∣

1 c12 c13

c12 1 c23

c13 c23 1

∣∣∣∣∣∣



× δ
(
m2

1 + m2
2 + m2

3 + 2m1m2c12 + 2m2m3c23 + 2m1m3c13 − p2) (3.4)

where the integration extends over cjl � 1.
If one were to interpret cjl as the cosines of the angles between the mj and ml sides

of a vertex of a parallelepiped (formed by m1,m2 and m3, see figure 2), then all these
quantities would have a straightforward geometrical interpretation. Namely, �(s, t, u) would
be 4{volume of parallelepiped}2, whereas the δ function would tell us that the ‘principal’
diagonal of this parallelepiped should be equal to p. In this case, the quantities

√
s,

√
t

and
√

u could be identified as the diagonals of the faces of the parallelepiped, see figure 2.
Moreover,

p2 + m2
1 − t

2pm1

p2 + m2
2 − u

2pm2
and

p2 + m2
3 − s

2pm3
(3.5)

could be understood as cosines of the angles between the diagonal p and the mi sides of the
parallelepiped. In other words, these are the angles between p and mi in triangles with sides
(p,m1,

√
t), (p,m2,

√
u) and (p,m3,

√
s), respectively.

Using this geometrical figure, we can mention a rather interesting geometrical meaning
of equation (2.14). Namely, it tells us that the volume of the parallelepiped is (8/p) times
the area of triangle whose sides are given by the areas of triangles formed out of the principal
diagonal p, one of the face diagonals (

√
s,

√
t or

√
u), and the appropriate m3,m1 or m2 side.

However, when we are above the threshold, p2 > (m1+m2+m3)
2, the quantities cjl exceed

one and therefore the expressions should be understood in the sense of analytic continuation,
i.e. as hyperbolic cosines. The same is valid for the triangles (p,m3,

√
s), etc: they should

also be understood in the sense of analytic continuation, since p � m3 +
√

s, etc. Therefore,
the quantities σi/mi should also be understood as hyperbolic cosines, whereas

√
σ 2

i − m2
i

/
mi

are hyperbolic sines.
Nevertheless, in the region below the threshold (which we need, for instance, to describe

the real part of the sunset diagram), this geometrical figure can have direct meaning,
generalizing the figure we had for the one-loop two-point function [19].
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4. Kibble cubic characteristics

Suppose

(s0, t0, w0 − s0 − t0) (s0, w0 − s0 − u0, u0) (w0 − t0 − u0, t0, u0) (4.1)

all are the roots of the equation �(s, t, u) = 0. Then, we can present �(s, t, u) as

�(s, t, u) = stu − st0u0 − s0tu0 − s0t0u + 2s0t0u0. (4.2)

Furthermore, if we shift the Mandelstam variables as

s = s0 + s ′ t = t0 + t ′ u = u0 + u′ (4.3)

subject to the condition

s ′ + t ′ + u′ = w0 − s0 − t0 − u0 ≡ w′
0 (4.4)

then

�(s, t, u) ⇒ s ′t ′u′ + s0t
′u′ + s ′t0u′ + s ′t ′u0. (4.5)

Using equation (4.2) and defining

ctu ≡
√

t0u0

tu
cst ≡

√
s0t0

st
csu ≡

√
s0u0

su
(4.6)

we arrive at another Gram determinant representation for �(s, t, u) (cf equation (3.2)),

�(s, t, u) = stu

∣∣∣∣∣∣
1 ctu cst

ctu 1 csu

cst csu 1

∣∣∣∣∣∣ . (4.7)

There are (at least) two sets of solutions (4.1) that can be described as

s0 = A1A2

A3
t0 = A2A3

A1
u0 = A1A3

A2
(4.8)

so that equation (4.2) yields

�(s, t, u) = stu − A2
1t − A2

2u − A2
3s + 2A1A2A3. (4.9)

The first set of solutions corresponds to

A1 ≡ pm1 + m2m3 A2 ≡ pm2 + m3m1 A3 ≡ pm3 + m1m2. (4.10)

For this set, we have

w′
0 = w0 − s0 − t0 − u0 = m1m2m3pQ−

A1A2A3
(4.11)

ctu = pm3 + m1m2√
tu

cst = pm2 + m1m3√
st

csu = pm1 + m2m3√
su

. (4.12)

Note that if we change p → −p in equation (4.10), this would also be a solution, which would
correspond to a ‘non-physical’ branch of the Kibble cubic.

The second set of solutions corresponds to

A1 ≡ 1
2

(
p2 + m2

1 − m2
2 − m2

3

)
A2 ≡ 1

2

(
p2 − m2

1 + m2
2 − m2

3

)
A3 ≡ 1

2

(
p2 − m2

1 − m2
2 + m2

3

)
.

(4.13)

For this set, we get

w′
0 = w0 − s0 − t0 − u0 = − Q+Q−

16A1A2A3
= − D123

16A1A2A3
(4.14)
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ctu = p2 − m2
1 − m2

2 + m2
3

2
√

tu
cst = p2 − m2

1 + m2
2 − m2

3

2
√

st
csu = p2 + m2

1 − m2
2 − m2

3

2
√

su
.

(4.15)

It should be noted that the value of s0 corresponding to the second set satisfies

λ
(
s0,m

2
1,m

2
2

) = λ
(
s0, p

2,m2
3

)
(4.16)

i.e. the areas (or their analytical continuations) of triangles with sides (
√

s0,m1,m2) and
(
√

s0, p,m3) are equal. Analogously,

λ
(
t0,m

2
2,m

2
3

) = λ
(
t0, p

2,m2
1

)
λ
(
u0,m

2
1,m

2
3

) = λ
(
u0, p

2,m2
2

)
. (4.17)

Moreover, one can get the direct geometrical interpretation of the quantities (4.15) through the
familiar parallelepiped shown in figure 2. Namely, ctu is nothing but the cosine between the
face diagonals

√
t and

√
u. Accordingly, csu is the cosine of the angle between

√
s and

√
u

diagonals, whilst cst is the cosine of the angle between
√

s and
√

t diagonals. If we construct
a tetrahedron using the

√
s,

√
t and

√
u diagonals then, according to equation (4.7), �(s, t, u)

would represent 36 times its volume squared.
In the Dalitz–Kibble plot shown in figure 1 we connect the points (4.1) for each of the

two sets by dashed lines, introducing subscripts [1] and [2] for the first and the second set,
respectively. The two resulting ‘dashed’ triangles indicate that the two sets of solutions are
complementary to each other. Namely, the boundary of the Dalitz plot confines the products
tu, st and su as follows:

(pm3 + m1m2)
2 � tu � 1

4

(
p2 − m2

1 − m2
2 + m2

3

)2

(pm2 + m1m3)
2 � st � 1

4

(
p2 − m2

1 + m2
2 − m2

3

)2

(pm1 + m2m3)
2 � su � 1

4

(
p2 + m2

1 − m2
2 − m2

3

)2

(4.18)

or, equivalently,

(t0u0)[1] � tu � (t0u0)[2] (s0t0)[1] � st � (s0t0)[2]

(s0u0)[1] � su � (s0u0)[2].
(4.19)

In other words, the first and the second sets yield, respectively, the minimal and the maximal
values of tu, st and su.

Let us consider the corresponding values of the ‘cosines’ csu, cst and ctu. For the first set,
csu, cst and ctu would vary between 1 and cos ϕi (i = 1, 2, 3), respectively, where

cos ϕ1 = 2(pm1 − m2m3)

p2 + m2
1 − m2

2 − m2
3

cos ϕ2 = 2(pm2 − m3m1)

p2 − m2
1 + m2

2 − m2
3

cos ϕ3 = 2(pm3 − m1m2)

p2 − m2
1 − m2

2 + m2
3

.

(4.20)

For the second set, csu, cst and ctu would vary between 1 and 1/ cos ϕi . This means that we
need to understand them in the sense of analytic continuation.

The angles ϕi will be very important below. Their sines can be presented as

sin ϕ1 =
√

Q+

p2 + m2
1 − m2

2 − m2
3

sin ϕ2 =
√

Q+

p2 − m2
1 + m2

2 − m2
3

sin ϕ3 =
√

Q+

p2 − m2
1 − m2

2 + m2
3

.

(4.21)
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It is interesting that the corresponding Gram determinant can be factorized as∣∣∣∣∣∣
1 −cos ϕ3 −cos ϕ2

−cos ϕ3 1 −cos ϕ1

−cos ϕ2 −cos ϕ1 1

∣∣∣∣∣∣ = 1

k2
sin2 ϕ1 sin2 ϕ2 sin2 ϕ3. (4.22)

Equation (4.22) can be used to express k in terms of ϕi . We also note that

tan
ϕ3

2
=

√
(p − m3)2 − (m1 − m2)2

(p + m3)2 − (m1 + m2)2
(4.23)

and similarly for ϕ1 and ϕ2. In particular, one can see that at the threshold, p = m1 + m2 + m3,
the angles ϕi are related to the angles θi from equation (20) of [20] (see also [10]) as
ϕi = π − 2θi , and

(ϕ1 + ϕ2 + ϕ3)|p=m1+m2+m3
= π. (4.24)

We can also consider associated angles ψi , such that

sin ψi = k sin ϕi cos ψi =
√

1 − k2 sin2 ϕi. (4.25)

Explicitly, we get

sin ψ3 =
√

Q−
p2 − m2

1 − m2
2 + m2

3

cos ψ3 = 2(pm3 + m1m2)

p2 − m2
1 − m2

2 + m2
3

(4.26)

etc. For these angles, we get∣∣∣∣∣∣
1 cos ψ3 cos ψ2

cos ψ3 1 cos ψ1

cos ψ2 cos ψ1 1

∣∣∣∣∣∣ = 1

k2
sin2 ψ1 sin2 ψ2 sin2 ψ3. (4.27)

5. A naturally symmetric representation

Using the representation (4.2) for �(s, t, u), in terms of s0, t0 and u0, the three-body phase-
space integral can be written as

I3 = π2

4p2

∫ ∫ ∫
ds dt du δ(s + t + u − w0)θ(stu − st0u0 − s0tu0 − s0t0u + 2s0t0u0) (5.1)

with w0 = p2 + m2
1 + m2

2 + m2
3. Integrating over u yields

I3 = π2

4p2

∫ ∫
ds dtθ{(st − s0t0)(w0 − s − t) − st0u0 − s0tu0 + 2s0t0u0}. (5.2)

Then, integrating over t, we basically obtain the difference between the roots of the quadratic
argument of the θ function, which is

1

s

√
s4 − 2w0s3 +

(
w2

0 + 2s0t0 + 2s0u0 − 4t0u0
)
s2 − 2(w0t0 + w0u0 − 4u0t0)s0s + s2

0(t0 − u0)2.

It is easy to check that for both sets of (s0, t0, u0) the square root takes the familiar form (1.5),
which yields the non-symmetric result (1.7) in terms of elliptic integrals.

Starting from the representation (2.13), one can easily generalize the result (1.5) to the
D-dimensional case as

I
(D)
3 = πD−1

(4p)D−2�2
(

D−1
2

) ∫ s3

s2

ds

sD/2−1
[(s − s1)(s − s2)(s3 − s)(s4 − s)](D−3)/2 (5.3)
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with si given in equation (1.6). Another way to derive the representation (5.3) is to use the
recurrence relation (1.2),

I
(D)
3 =

∫ s3

s2

ds I
(D)
2 (p,

√
s,m3)I

(D)
2 (

√
s,m1,m2) (5.4)

and substitute the result (2.5) for I
(D)
2 . The result (5.3) corresponds to equation (9) of [4]. (We

note that the overall factor on the r.h.s. of equation (9) of [4] should be corrected: (32π)2−2�

should be changed into 1
2 (16π)2−2�, with � = D/2).

Using representation (5.3), it is easy to see (just substituting s = x2) that all odd-
dimensional phase-space integrals can be expressed in terms of polynomial functions (see,
e.g., in [21–23]),

I
(3)
3 = π2

2p
(p − m1 − m2 − m3) (5.5)

I
(5)
3 = π4

60p3
(p − m1 − m2 − m3)

3

[
1

7
(p − m1 − m2 − m3)

4 + (m1 + m2 + m3)p
3

− 2
(
m2

1 + m2
2 + m2

3

)
p2 +

(
m3

1 + m3
2 + m3

3

)
p + 12m1m2m3p

− (m1 + m2 + m3)(m1 + m2)(m2 + m3)(m3 + m1)

+ 4m1m2m3(m1 + m2 + m3)

]
(5.6)

etc, which are explicitly symmetric in the masses mi . However, the results in even dimensions
appear to be less trivial.

It is instructive to consider the two-dimensional case, D = 2. Then, the integral (5.3)
yields just the elliptic integral K(k),

I
(2)
3 =

∫ s3

s2

ds√
(s − s1)(s − s2)(s3 − s)(s4 − s)

= 2√
Q+

K(k). (5.7)

This is of course explicitly symmetric in the masses without further ado. On the other hand,
using the δ function in equation (5.1), we can insert 1 = (s + t + u)/w0 in the integrand, and
then consider the three resulting terms (with s, t and u) separately. In this way, we arrive at an
alternative expression,

I
(2)
3 = 1

w0

{∫ s3

s2

s ds√
(s − s1)(s − s2)(s3 − s)(s4 − s)

+
∫ t3

t2

t dt√
(t − t1)(t − t2)(t3 − t)(t4 − t)

+
∫ u3

u2

u du√
(u − u1)(u − u2)(u3 − u)(u4 − u)

}
(5.8)

where the roots ti and ui can be obtained from si given in equation (1.6) by proper permutation
of the masses mi . Each of the integrals involved in equation (5.8) can be expressed in terms
of Jacobian Z function (see the appendix). For example,∫ s3

s2

s ds√
(s − s1)(s − s2)(s3 − s)(s4 − s)

= sin ϕ3

sin ϕ1 sin ϕ2
K(k) − K(k)Z(ϕ3, k) (5.9)

where ϕi are nothing but the three angles defined in equations (4.20) and (4.21). Comparing
the resulting expression with the original result (5.7), we obtain a very useful relation between
the three Z(ϕi, k) functions,

Z(ϕ1, k) + Z(ϕ2, k) + Z(ϕ3, k) = k2 sin ϕ1 sin ϕ2 sin ϕ3. (5.10)
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Let us now consider the four-dimensional integral I
(4)
3 ≡ I3, namely, its representation

(1.5). A useful observation is that the result would be simpler if we managed to get rid of s in
the denominator. In particular, it would contain just one elliptic integral �, rather than two.
How are we to eliminate s in the denominator? Again, using the δ function in equation (5.1),
we can insert 1 = (s + t + u)/w0 in the integrand, and then consider the three resulting terms
(with s, t and u) separately. For the term with s, we perform the t and u integrations and
arrive at the same integral as in equation (1.5), but without s in the denominator. In two other
integrals, we just integrate in a different order, leaving as the last one the t or u integration,
respectively. In this way, we obtain for the integral (5.1)

π2

4p2w0

∫ ∫ ∫
ds dt du(s + t + u)δ(s + t + u − w0)θ(stu − st0u0 − s0tu0 − s0t0u + 2s0t0u0)

= π2

4p2w0

{∫ s3

s2

ds
√

(s − s1)(s − s2)(s3 − s)(s4 − s)

+
∫ t3

t2

dt
√

(t − t1)(t − t2)(t3 − t)(t4 − t)

+
∫ u3

u2

du
√

(u − u1)(u − u2)(u3 − u)(u4 − u)

}
(5.11)

where, as before, the roots ti and ui can be obtained from si given in equation (1.6) by
permutation of the masses.

Using the formulae given in [24] along with equations (A.8) and (A.11), the s-integral in
equation (5.11) can be calculated in terms of a Jacobian Z function (see the appendix),∫ s3

s2

ds
√

(s − s1)(s − s2)(s3 − s)(s4 − s)

=
√

Q+

{
2
(
p2m2

3 − m2
1m

2
2

)
K(k)

Z(ϕ3, k)

sin ϕ3
+

1

6
Q−K(k)

+
1

6

[(
p2 − m2

1 − m2
2 + m2

3

)2
+ 8

(
p2m2

3 + m2
1m

2
2

)]
[E(k) − K(k)]

}
(5.12)

where ϕ3 is one of the three angles defined in equations (4.20) and (4.21).
Collecting the results for all three integrals and using the relation (5.10), we arrive at the

symmetric result

I3 = π2

8p2

{√
Q+

(
p2 + m2

1 + m2
2 + m2

3

)
[E(k) − K(k)]

+ Q+K(k)

[
Z(ϕ1, k)

sin2 ϕ1
+

Z(ϕ2, k)

sin2 ϕ2
+

Z(ϕ3, k)

sin2 ϕ3

]}
. (5.13)

This symmetric result can also be presented in terms of the elliptic integrals �, using (see in
[24])

K(k)Z(ϕi, k) = cot ϕi

√
1 − k2 sin2 ϕi [�(k2 sin2 ϕi, k) − K(k)]. (5.14)

In principle, one can also derive the result (5.13) directly from the non-symmetric
representation (1.7) (see [25]), in a tedious way relying on the use of several relations collected
in the appendix, including the addition formula (A.9) for Jacobi Z functions.
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It is worth noting that in a similar way one can obtain results for higher even dimensions
D. For instance, in six dimensions we get

I
(6)
3 = π4

144p4

{
Q

1/2
+

20
[E(k) − K(k)]

[
192

(
p8 + m8

1 + m8
2 + m8

3

) − 112
(
p4 + m4

1 + m4
2 + m4

3

)2

− 6
(
p2 + m2

1 + m2
2 + m2

3

)4 − 156
(
p6 + m6

1 + m6
2 + m6

3

)(
p2 + m2

1 + m2
2 + m2

3

)
+ 83

(
p4 + m4

1 + m4
2 + m4

3

)(
p2 + m2

1 + m2
2 + m2

3

)2
]

+
1

40
Q−Q

1/2
+ K(k)

[
3
(
p2 + m2

1 + m2
2 + m2

3

)2 − 16
(
p4 + m4

1 + m4
2 + m4

3

)]
+

3

4

Q
5/2
+ K(k)

sin ϕ1 sin ϕ2 sin ϕ3

[
Z(ϕ1, k)

sin2 ϕ1
+

Z(ϕ2, k)

sin2 ϕ2
+

Z(ϕ3, k)

sin2 ϕ3

]

− 3

8
Q2

+

(
p2 + m2

1 + m2
2 + m2

3

)
K(k)

[
Z(ϕ1, k)

sin4 ϕ1
+

Z(ϕ2, k)

sin4 ϕ2
+

Z(ϕ3, k)

sin4 ϕ3

]}
.

(5.15)

As an alternative way to obtain results for higher values of D, the approach of the paper [9]
may be used.

In the equal-mass case,

ϕ1 = ϕ2 = ϕ3 ≡ ϕeq sin ϕeq =
√

(p − m)(p + 3m)

p + m
cos ϕeq = 2m

p + m
. (5.16)

Here, using equation (5.10) we get

Z(ϕeq, keq) = 1
3k2

eq sin3 ϕeq (5.17)

with keq defined in equation (1.12). In this way, we reproduce equation (1.11), whereas for
D = 6 equation (5.15) yields

π4

2880p4

√
(p − m)3(p + 3m)

{
(p4 − 9m4)(p4 − 42p2m2 + 9m4)[E(keq) − K(keq)]

+ (p + m)3(p − 3m)(p4 − 36p2m2 + 27m4)K(keq)
}
. (5.18)

We note that equation (5.17) yields a reduction formula of Z(ϕ, k), for a special case when

k =
√

1 − 2 cos ϕ

sin ϕ(1 − cos ϕ)
.

Another interesting limit corresponds to the case when one of the masses vanishes (for
example, m3 → 0). This corresponds to the case k → 1, when E(k) is finite (E(1) = 1)

whereas K(k) develops logarithmic singularity. At m3 = 0, cos ϕ3 < 0 and ϕ3 > π/2, so that
we need to use equation (A.7). Using equations listed in [24], we get

lim
k→1

{K(k)[±Z(ϕ, k) − sin ϕ]} = −1

2
ln

(
1 + sin ϕ

1 − sin ϕ

)
(5.19)

where plus or minus should be used for ϕ < π/2 or ϕ > π/2, respectively. Let us consider
equation (5.13). Using equations (5.19) and (4.21) we see that singular terms containing K(k)
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cancel, and we arrive at the following result:

lim
m3→0

I3 = π2

8p2

{√
Q+

(
p2 + m2

1 + m2
2

)
+

1

2

(
p2 − m2

1 − m2
2

)2
ln

(
p2 − m2

1 − m2
2 +

√
Q+

p2 − m2
1 − m2

2 − √
Q+

)

− 1

2

(
p2 + m2

1 − m2
2

)2
ln

(
p2 + m2

1 − m2
2 +

√
Q+

p2 + m2
1 − m2

2 − √
Q+

)

− 1

2

(
p2 − m2

1 + m2
2

)2
ln

(
p2 − m2

1 + m2
2 +

√
Q+

p2 − m2
1 + m2

2 − √
Q+

)}
(5.20)

where Q+ = λ
(
p2,m2

1,m
2
2

)
in this limit. It is easy to check that this expression is equivalent

to known results (see, e.g., [3, 8]). The advantage of our approach is that the symmetry with
respect to any of the remaining masses is always explicit, whereas non-symmetric expressions
such as equation (1.7) lead to the answers which are not explicitly symmetric (cf equation (57)
of [8]).

6. Conclusion

We have considered several representations for the three-particle phase space, exploring their
symmetry properties and geometrical meaning. It was shown that the angles ϕi defined
in equations (4.20) and (4.21) are convenient to describe the results for the three-particle
phase-space integral I3. In terms of the Jacobian Z function (related to the elliptic integral
� through equation (5.14)), the result for I3 in four dimensions is given in equation (5.13).
It is very compact and explicitly symmetric with respect to all masses mi . Note that the
three zeta functions Z(ϕi, k) are connected through the relation (5.10). This relation can be
obtained by comparing the representation (5.7) for two-dimensional integral I

(2)
3 with another

representation obtained by using the delta function properties.
In this way, we have shown how to transcribe the unsymmetric evaluation (1.2) of the

phase-space integral into a form which is manifestly symmetric in the masses of the three
decay products. Of course, the practical importance of this exercise is rather restricted,
since (1.2) can be worked out numerically anyhow. Nevertheless, our result has an elegant
structure and theoretical significance as it bears upon properties of elliptic functions which
arise from elimination of variables in equations (2.13) and (2.16).

We have also considered the six-dimensional case. The result for I
(6)
3 is given in

equation (5.15), also expressed in terms of Z(ϕi, k).
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Appendix. Elliptic integrals

The normal elliptic integrals of the first and second kind are defined as

F(ϕ, k) =
∫ sin ϕ

0

dt√
(1 − t2)(1 − k2t2)

=
∫ ϕ

0

dψ√
1 − k2 sin2 ψ

(A.1)
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E(ϕ, k) =
∫ sin ϕ

0
dt

√
1 − k2t2

1 − t2
=

∫ ϕ

0
dψ

√
1 − k2 sin2 ψ. (A.2)

At ϕ = π/2 we get the complete elliptic integrals,

K(k) = F
(

π
2 , k

) =
∫ 1

0

dt√
(1 − t2)(1 − k2t2)

= π

2
2F1

(− 1
2 , 1

2
1

∣∣∣∣ k2

)
(A.3)

E(k) = E
(

π
2 , k

) =
∫ 1

0
dt

√
1 − k2t2

1 − t2
= π

2
2F1

( 1
2 , 1

2
1

∣∣∣∣ k2

)
(A.4)

�(c, k) =
∫ 1

0

dt

(1 − ct2)
√

(1 − t2)(1 − k2t2)
= π

2
F1

(
1
2 ; 1, 1

2 ; 1|c, k2
)

(A.5)

where F1 is the Appell hypergeometric function of two arguments.
The Jacobian zeta function, Z(β, k), is defined through

K(k)Z(β, k) = K(k)E(β, k) − E(k)F (β, k). (A.6)

We will assume that 0 � k < 1. (In the limit k → 1, F (β, k) and K(k) are singular.) From
the definition (A.6) it is obvious that Z

(
π
2 , k

) = 0. Moreover, using symmetry properties of
E(β, k) and F(β, k) (see in [24]),

E
(

π
2 + δ, k

) = 2E(k) − E
(

π
2 − δ, k

)
F

(
π
2 + δ, k

) = 2K(k) − F
(

π
2 − δ, k

)
we get

Z
(

π
2 + δ, k

) = −Z
(

π
2 − δ, k

)
. (A.7)

To represent the elliptic functions �(αi, k) occurring in equation (1.7) in terms of Z
functions, we can use

�
(
α2

i , k
) = K(k) +

αiK(k)Z(βi, k)√(
1 − α2

i

)(
k2 − α2

i

) (A.8)

with βi = arcsin(αi/k). Equation (A.8) corresponds to case III on p 229 of [24], when
0 � α2

i < k2.
The following addition formulae from [24] (p 34, equation (142.01)) are needed:

Z(β1, k) ± Z(β2, k) = Z(ϕ±, k) ± k2 sin β1 sin β2 sin ϕ± (A.9)

where the angles

ϕ± = 2 arctan

[
sin β1

√
1 − k2 sin2 β2 ± sin β2

√
1 − k2 sin2 β1

cos β1 + cos β2

]
. (A.10)

In fact, the angles ϕ− and ϕ+ correspond to the angles ϕ1 and ϕ2 (see equations (4.20) and
(4.21)), respectively. Moreover, using the same addition formula (A.9) with β1,2 substituted
by ϕ1,2, we get the symmetric connection (5.10) between Z(ϕi, k) (i = 1, 2, 3).

To derive the result given in equation (5.12), one can use the integral tables of [24], along
with the following relation:

2Z(β1, k) = −Z(ϕ3, k) +
2k2 sin3 β1 cos β1

√
1 − k2 sin2 β1

1 − k2 sin4 β1
. (A.11)

It corresponds to the last two lines of equation (141.01) on p 33 of [24], where ϕ ↔ π − ϕ3.
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